
Journal of Global Optimization13: 95–106, 1998.
© 1998Kluwer Academic Publishers. Printed in the Netherlands.

95

Two Heuristics for the Euclidean Steiner Tree
Problem

DEREK R. DREYER1 and MICHAEL L. OVERTON2

1School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA;2Computer
Science Department, Courant Institute of Mathematical Sciences, New York University, New York,
USA

(Received 31 December 1996; accepted 15 October 1997)

Abstract. The Euclidean Steiner tree problem is to find the tree with minimal Euclidean length
spanning a set of fixed points in the plane, allowing the addition of auxiliary points to the set (Steiner
points). The problem is NP-hard, so polynomial-time heuristics are desired. We present two such
heuristics, both of which utilize an efficient method for computing a locally optimal tree with a given
topology. The first systematically inserts Steiner points between edges of the minimal spanning tree
meeting at angles less than 120 degrees, performing a local optimization at the end. The second
begins by finding the Steiner tree for three of the fixed points. Then, at each iteration, it introduces
a new fixed point to the tree, connecting it to each possible edge by inserting a Steiner point, and
minimizes over all connections, performing a local optimization for each. We present a variety of
test cases that demonstrate the strengths and weaknesses of both algorithms.

Key words: Euclidean Steiner tree, Interior-point algorithm

1. Introduction

Given a set of fixed (or terminal) pointst1, . . . , tn in <2, theSteiner tree problemis
to find the shortest network (in the Euclidean sense) connecting the points, allowing
the addition of auxiliary points to the set for the purpose of minimizing the total
length. These auxiliary points are calledSteiner pointsand there need be at most
n−2 of them [5]. Because of the ability to add Steiner points to the original graph,
the Steiner tree problem is NP-hard [4], and thus good heuristics are perhaps the
best hope.

An important aspect of Steiner trees is that the edges connected to the Steiner
points all intersect at angles of 120 degrees. In fact, there is a theorem that states
that “no two edges of a Steiner tree can meet at an angle less than 120 degrees” and
“each Steiner point of a Steiner tree is of degree exactly three” [6]. These facts are
essential to an understanding of the problem and formed the basis for one of the
heuristics we have developed.

The simplest example and one which occurs quite frequently inside larger prob-
lems is the 3-point case as seen in Figure 1, also known as the Fermat problem.
The solution to this case, known as the Torricelli point, has a simple construction

jogo431.tex; 30/06/1998; 12:38; p.1
FIRSTPROOF: PIPS No.: 152632 (jogokap:mathfam) v.1.15



96 DEREK R. DREYER AND MICHAEL L. OVERTON

Figure 1. Steiner tree for simple 3-point case.

described by Melzak [7] and Hwang et al. [6]. Figure 2 shows another elementary
example consisting of 4 points forming a rectangle with sides 1 and 1.3. Here is
a case where there exists a local minimal Steiner tree (the dashed tree) which is
not the global minimal Steiner tree (the solid tree). In fact, the local minimal tree,
which also has only 120-degree angles about the Steiner points, has length 3.252,
whereas the global Steiner tree has length 3.032. Note that, in all the figures in this
report, circles represent fixed points and stars represent Steiner points.

2. Heuristic tools

Within our heuristics and in testing our heuristics we have utilized several algo-
rithmic tools, some supplied by others and some of our own. Before moving on to
a detailed description of our heuristics, it is first necessary to briefly discuss the
general function of these tools and how we applied them.

2.1. LOCAL OPTIMIZATION ALGORITHMS

There is a crucial step in both of our heuristics that involves finding locally optimal
positions for the Steiner points given a fixed topology defining the edges of the
graph. Originally, we used a primal-dual interior point method for minimizing a
sum of Euclidean vector norms as described by Conn and Overton [3] and written
in MATLAB. This method was easily applicable to the Steiner tree problem and

jogo431.tex; 30/06/1998; 12:38; p.2



TWO HEURISTICS FOR THE EUCLIDEAN STEINER TREE PROBLEM 97

Figure 2. Global and local Steiner trees for simple 4-point case.

worked quite well. Currently, however, we are working with a similarly aimed, but
considerably faster, code written in C by Knud Andersen [1]. Though naturally it
takes longer to run large cases than small ones, the Andersen code is in general
extremely efficient, and for the problems we have been dealing with (size 100 or
less), the computation requires between 6 and 10 seconds on Sparc 10 machine.

2.2. AN EXACT STEINER ALGORITHM

It has been immeasurably helpful in testing and comparing our heuristics to have
access to a branch-and-bound algorithm, written by Xue, Dougherty, and Lillys in
FORTRAN, that computes exact Steiner trees. Essentially, the algorithm begins by
finding the Steiner tree for three of the fixed points. Then, at each iteration, it adds
another fixed point to the graph, connecting it to the graph at each possible edge,
and locally optimizing. Unfortunately, due to the exponential running time of the
algorithm, we were not able to run it on cases of size 14 or greater. However, as
we will describe in detail in Section 4, it provided the basic idea for our second
heuristic.

2.3. THE MINIMAL SPANNING TREE

Theminimal spanning tree problem, with edge cost defined by Euclidean distance,
is essentially the Steiner tree problem without the ability to add Steiner points.

jogo431.tex; 30/06/1998; 12:38; p.3



98 DEREK R. DREYER AND MICHAEL L. OVERTON

In the worst case?, specifically the simple 3-point case of Figure 1, the minimal
spanning tree consists of two sides of an equilateral triangle with sides of length
1, while the exact Steiner tree consists of three edges of length 1/

√
3 intesecting

at the Torricelli point and bisecting each of the three angles of the triangle. So,
the improvement of the exact Steiner tree over the minimal spanning tree is 13.4%
in this case. On average, however, it is much less. Thus, the minimal spanning
tree itself becomes a measuring-stick for Steiner heuristics. In addition, there exist
a number of efficient algorithms for finding the minimal spanning tree (we have
implemented a rather simple one), and so it can be a good starting point for building
a somewhat better heuristic. In fact, finding the minimal spanning tree is the first
step of the heuristic described in the next section.

3. The Steiner insertion heuristic

The first heuristic we have developed is theSteiner insertion heuristic, which is
essentially an attempt to ensure the necessary, but not sufficient, condition that
edges in Steiner trees meet at angles greater than or equal to 120 degrees. It was
inspired by a suggestion of Thompson mentioned in the “Heuristics” chapter of
[6].

ALGORITHM 1 ((SI) The Steiner Insertion Algorithm).
1. Find the minimal spanning tree.

2. FOR each edge connecting fixed points(tx, ty) DO

(a) Find the edge(ty, tz) that meets(tx, ty) at the smallest angle, wheretz
can be either a fixed point or a Steiner point.

(b) IF this angle is less than 120 degrees THEN

i. Place a new Steiner pointsn on top ofty .
ii. Remove the edges(tx, ty) and(ty, tz). These edges will no longer

be considered for the loop of Step 2.
iii. Add the edges(tx, sn), (ty, sn), and(tz, sn).

3. Run the local optimization algorithm on the tree with its new topology.

In implementing this algorithm, it is important to note that the topology switching
and Steiner insertion of step 2b causes the formation of a zero-length edge. Such
edges are ignored when considering edges for step 2a. In addition, in the FOR loop
of step 2, one must be sure to consider each edge in both directions provided that,
after processing it in one direction, it hasn’t been removed. For instance, suppose
we have a graph of three vertices and the minimal spanning tree has two edges
(t1, t2) and (t1, t3). Then, suppose that step 2 examines both of these edges with
t1 in the place oftx. Neither edge processing will result in any Steiner insertion
because neithert2 nor t3 is connected to any other point butt1. So, it becomes

? From the point of view of one who is trying to find a good approximation of the Steiner tree.

jogo431.tex; 30/06/1998; 12:38; p.4



TWO HEURISTICS FOR THE EUCLIDEAN STEINER TREE PROBLEM 99

necessary to examine the edges from the reverse perspective, witht2 or t3 in the
place oftx . Lastly, it should be understood that, if the minimal spanning tree is not
unique, different minimal spanning trees may produce different SI heuristic trees.
Thus, since the initial ordering of the points can affect the outcome of the minimal
spanning tree algorithm as well as the order in which the edges are examined in
step 2 of SI, the SI heuristic tree is frequently dependent on the initial ordering of
the points.

As a demonstration of how the algorithm works, we will step through its ex-
ecution for the simple 4-point case. First, let’s label the pointst1 = (0,0), t2 =
(0,1.0), t3 = (1.3,1.0), andt4 = (1.3,0). The minimal spanning tree consists of
the edges(t1, t2), (t2, t3), and(t3, t4). The insertion heuristic would first notice that
the edges(t1, t2) and(t2, t3)meet at an angle of 90 degrees, and therefore it would
perform a Steiner insertion – discarding those edges, introducing the Steiner point
s1, and adding the edges(t1, s1), (t2, s1), and(t3, s1). Likewise, the heuristic would
perform a Steiner insertion between the edges(t4, t3) and(t3, s1), thus producing a
tree with edge list

{(t1, s1), (t2, s1), (t3, s2), (t4, s2), (s1, s2)}.
This is clearly the topology of the global minimal Steiner tree in Figure 2, and
running the local optimization algorithm on it would produce the exact Steiner tree
as seen there.

In theory, steps 1 and 2 of the Steiner insertion heuristic both have a worst-case
running time ofO(n3), but they turn out to be very fast in practice. The Andersen
code for step 3, though very efficient, generally takes about as long as the other
two, if not slightly longer, for cases of size 100 or less. So, for example, on a
Sparc 10 running MATLAB (which makes external calls to Andersen’s C code),
the algorithm only takes 40 seconds on average to run for a 100-point problem,
and a few seconds for small cases. More examples and results are given in Section
5.

4. The incremental optimization heuristic

The second heuristic we have developed is theincremental optimization heuristic.
As mentioned earlier, it is a greedy variant of the exact Steiner algorithm by Xue,
Dougherty, and Lillys, but since it only performs a polynomial number of local
optimizations, it does not obtain optimal solutions in general.

ALGORITHM 2 ((IO) The Incremental Optimization Algorithm).
1. Order the fixed points by the distance from their mean, the first being closest

to it. (This ordering step greatly reduces the dependency of the final tree on
the initial ordering of the points, although there can still be ties.)

2. Insert a Steiner point between the first three fixed points, connect it to each,
and locally optimize to obtain the Steiner tree for those three points. Call it
the current tree.

jogo431.tex; 30/06/1998; 12:38; p.5



100 DEREK R. DREYER AND MICHAEL L. OVERTON

3. FORk = 4, . . . , nDO

(a) Save the current tree asoldtreeand setbesttreeto an artificial tree
with length∞.

(b) FOR each edge(a, b) of the current tree DO
i. Place a Steiner points on the edge(a, b).
ii. Remove the edge(a, b).
iii. Add the edges(tk, s), (a, s), (b, s).
iv. Run the local optimization routine.
v. If the resulting tree is shorter thanbesttree, then setbesttreeto

this new tree.
vi. Set the current tree tooldtree.

(c) Set the current tree tobesttree.

4. Set the final tree to the current tree.

If we were to run this heuristic on the simple 4-point case, we would first place
a Steiner point betweent1, t2, andt3, connect each of those points to the Steiner
point, and locally optimize. Then, we would try connectingt4 to each of the three
edges of the current tree, and for each connection perform a local optimization.
Connectingt4 to (t3, s1) produces the globally optimal solution.

Since at each iteration two more edges are added to the tree, the total number of
calls to the local optimization routine (which does most of the work) isn2−4n+4,
and so the running time of this heuristic is2(n2) times the running time of one
local optimization. Therefore, working on a Sparc 10 in MATLAB (with external
calls to Andersen’s C code), we find that, on average, a 10-point test takes 10
minutes, a 40-point test 3 hours, and a 100-point test 1 day. These times are quite
reasonable, considering that the algorithm is frequently very accurate, as we will
discuss in the next section.

5. Test results

Through experimentation, we have found that each of our heuristics for the Steiner
tree problem has its own advantages and disadvantages. While the Steiner insertion
heuristic is always much faster, the incremental optimization heuristic gets better
results in most cases. However, for many large randomly generated cases, the latter
cannot surpass the former and there does not seem to be much room for improve-
ment anyway. In this section we provide the results of different kinds of test runs
for both heuristics in order to give a well-rounded view of their performance.

Figure 3 and Figure 4 show the results of the two heuristics on a test case of nine
points, grouped in three triangular-shaped groups of three, with one point from each
group the vertex of a larger triangle. (Note that, in these figures, instances of stars
and circles overlapping signify that a Steiner point coincided with a fixed point, i.e.
was deemed unnecessary in the current topology by the local optimization routine.)
Here, the trouble with the Steiner insertion heuristic is that, although it creates a

jogo431.tex; 30/06/1998; 12:38; p.6



TWO HEURISTICS FOR THE EUCLIDEAN STEINER TREE PROBLEM 101

Figure 3. SI heuristic tree for the first case.

Figure 4. IO heuristic tree for the first case.

jogo431.tex; 30/06/1998; 12:38; p.7



102 DEREK R. DREYER AND MICHAEL L. OVERTON

Figure 5. SI heuristic tree for the second case.

tree with no angles less than 120 degrees, it fails to insert the critical Steiner point
in the center of the large triangle. On the other hand, the more consistently accurate
incremental optimization heuristicdoesmanage to insert it. The importance of the
critical Steiner point here is reflected in the heuristics’ percent improvement over
the minimal spanning tree: IO achieves 7.9% improvement, while SI only achieves
3.4%. In fact, in this case, the IO heuristic treeis the exact Steiner tree.

Similar results can be seen in this next example. Figure 5 and Figure 6 depict the
results of both heuristics on a point set of 40, grouped into four 10-point clusters
occupying the four corners of a square region. Again, though the SI tree satisfies
the 120-degree rule, it fails to recognize the underlying structure of the point set,
while the IO tree succeeds. The percent improvement for the SI is 0.7%, and for the
IO 5.4%. We do not know if the IO treeis the exact Steiner tree because the point
set is too large for us to use the exact algorithm, but it is most definitely very close.
However, it should be noted that, whereas the SI tree was computed in a matter of
seconds, the IO heuristic took over three hours.

Our third test is the well-known “ladder” test of Chung and Graham withn = 10
[2], and its exact Steiner tree is displayed in Figure 7. The results of our heuristics
are shown in Figure 8 and Figure 9. While SI scores an expected 3.0% improvement
over the minimal spanning tree, IO does quite well, with 5.2%. The improvement
of the exact Steiner tree is 7.3%

In our last 40-point example, the point set is completely random within a square
with side length 10. As reflected here, our experience with these completely ran-
dom cases is that the IO heuristic doesn’t improve much (if any) on the SI, and

jogo431.tex; 30/06/1998; 12:38; p.8



TWO HEURISTICS FOR THE EUCLIDEAN STEINER TREE PROBLEM 103

Figure 6. IO heuristic tree for the second case.

Figure 7. Steiner tree for “ladder” case.

jogo431.tex; 30/06/1998; 12:38; p.9



104 DEREK R. DREYER AND MICHAEL L. OVERTON

Figure 8. SI heuristic tree for “ladder” case.

Figure 9. IO heuristic tree for “ladder” case.

jogo431.tex; 30/06/1998; 12:38; p.10



TWO HEURISTICS FOR THE EUCLIDEAN STEINER TREE PROBLEM 105

Figure 10. SI heuristic tree for last case.

thus these are the best kinds of problems for the latter. In addition, at least for
many small cases, the exact Steiner tree is the same as or not much better than the
SI tree. The reason for this seems to be that any tree that connects a set of closely
spaced points covering an entire region simply can’t be that much shorter than the
minimal spanning tree, and thus the small improvement of the SI tree is all that can
be expected. Figure 10 shows the SI tree for this example.

6. Concluding remarks and Acknowledgments

We would first like to make special note of our major reference throughout our
work on Steiner trees, the monograph on the subject by Hwang, Richards, and
Winter [6]. The “Heuristics” chapter of this book contains many suggestions for
possible heuristics, one of which we actually used for our Steiner insertion algo-
rithm. The difficulty we found with some of them, however, is that they were either
too vague in description or we could not see how to integrate them with our local
optimization routine, an essential part of both of our heuristics. Nevertheless, we
found the book to be a vital resource.

We would also like to thank Knud Andersen for the use of his local optimization
code and Guo-Liang Xue for the use of his branch-and-bound code. The second
author also thanks Bill Pulleyblank for several helpful conversations. In conclu-
sion, we hope that these new heuristics and the knowledge gained from them will
prove useful to those studying Steiner trees and may be applicable to more concrete
problems in the near future.

jogo431.tex; 30/06/1998; 12:38; p.11



106 DEREK R. DREYER AND MICHAEL L. OVERTON

The work of both authors was conducted at New York University with support
from National Science Foundation grant CCR-9625955.

References

1. E.D. Andersen and K.D. Andersen (1996),APOS user’s manual for QMSN problems ver 1.71.
EKA consulting, June 1996.

2. F.R.K. Chung and R.L. Graham (1978), Steiner trees for ladders. In B. Alspach, P. Hell, and D.J.
Miller (eds.),Annals of Discrete Mathematics 2(pp. 173–200). Amsterdam: North-Holland.

3. A.R. Conn and M.L. Overton (1994), A primal-dual interior point method for minimizing a
sum of Euclidean vector norms. Draft copy of incomplete manuscript, July 1994.

4. M.R. Garey, R.L. Graham and D.S. Johnson (1977), The complexity of computing Steiner
minimal trees,SIAM Journal on Applied Mathematics32: 835–859.

5. E.N. Gilbert and H.O. Pollak (1968), Steiner minimal trees,SIAM Journal on Applied
Mathematics16: 1–29.

6. F.K. Hwang, D.S. Richards and P. Winter (1992),The Steiner Tree Problem. Annals of Discrete
Mathematics. Amsterdam: Elsevier.

7. Z.A. Melzak (1961), On the problem of Steiner,Canadian Mathematical Bulletin4: 143–148.

jogo431.tex; 30/06/1998; 12:38; p.12


